OTC/ MANE-VU Committee Meeting September 24, 2014 Hall of States Washington, D.C.

Ali Mirzakhalili, P.E. Stationary and Area Source Committee Update

Outline

Update on Committee efforts

•Update on completing Charge

•Moving Forward- Next steps for the SAS Committee

Charge to the Committee

LARGEST CONTRIBUTOR ANALYSIS

Using the most recent emission inventory data available to:

- Identify the largest individuals and groupings of NOx emitters within states where that state contributes at least 1% of the 2008 ozone NAAQS of 75 ppb to OTC states;
- Identify emission sources with the highest short-term emissions of NOx and VOC;
- Evaluate real world achievable NOx emission rates across load ranges to adjust long and short term expectations for emission reductions.
- Develop individual state EGU NOx emission rates achievable, considering reasonable available controls.

DISTRIBUTED AND EMERGENCY GENERATOR INVENTORY

Obtain information from system operators concerning the location, operation and emissions of all units that participate or plan to participate with the system operator to analyze the air quality impact of these engines and make recommendations for potential control strategies to the Commission.

Largest Contributor (EGU) Analysis

EGU Workgroup posted the draft Whitepaper of the EGU Emissions Inventory Analysis for the OTC Modeling Domain for stakeholder comments on the OTC website in April, Workgroup is currently reviewing stakeholder comments

The draft EGU Emissions Inventory Analysis Whitepaper includes:

- Analysis of 2011 and 2012 state level ozone season EGU NOx emissions (tons) and ozone season state average EGU NOx emission rate (lb/mmBtu) data.
- Analysis 1 NOx controls and EGU retirements
- Analysis 2 Short Term (Hourly) EGU NOx Emissions 2012
- Analysis 3 EGU NOx emissions during the 2011 Ozone Season including emissions, fuel type, and temperature charts.
- Analysis 4 "Coal SCR Scorecard" Analysis 2011 & 2012
- Analysis 5 Recommendation for modeling of Short Term NOx emission limits for EGUs

Largest Contributor Cost Analysis

Largest Contributor Workgroup is looking into both the capital cost and the operating and maintenance cost of pollution control devices.

- Preliminary SCR and SNCR control costs were reproduced using the Sargent & Lundy control cost methodology developed for EPA's IPM Model v.5.13
- S&L SCR control cost methodology includes 2004 to 2006 industry cost estimates, additional 2010 cost estimates prepared by consultants for UARG and S&L in-house data for recent SCR Projects (2007-2012). Data was convert to 2012 dollars based on Chemical Engineering Plant Index (CEPI) data
- S&L SNCR control cost methodology includes S&L in-house data from recent quotes (2009 to 2012) for lump sum contracts

Detailed examples of the SCR and SNCR control cost spreadsheet analyses can be found at:

- http://www.epa.gov/airmarkets/progsregs/epa-ipm/docs/v513/attachment5_3.pdf &
- <u>http://www.epa.gov/airmarkets/progsregs/epa-ipm/docs/v513/attachment5_4.pdf</u>

Preliminary SCR Cost Calculations(in 2012 dollars)

				NOx			
				Removal		Capital	
	Boiler Size	Heat Rate	NOx Control	Efficiency	Variable O&M	Cost	Fixed O&M
Type of Boiler	(MW)	(Btu/kWh)	Technology	(%)	(\$/MWh)	(\$/kW)	Cost (\$/kW-yr)
	100	10,000	SCR	75	1.51	380	1.97
	300	10,000	SCR	75	1.51	311	0.87
Coal-fired Boilers	500	10,000	SCR	75	1.51	287	0.73
	700	10,000	SCR	75	1.51	274	0.67
	1000	10,000	SCR	75	1.51	261	0.61
	100	10,000	SCR	90	1.72	392	2.01
	300	10,000	SCR	90	1.72	321	0.89
Coal-fired Boilers	500	10,000	SCR	90	1.72	297	0.75
	700	10,000	SCR	90	1.72	283	0.69
	1000	10,000	SCR	90	1.72	270	0.63

Based Sargent & Lundy Cost Development Methodology for IPM Model v.5.13 (S&L, March 2013)

<u>http://www.epa.gov/airmarkets/progsregs/epa-ipm/docs/v513/attachment5_3.pdf</u> Assumes boiler burning bituminous coal with a NOx input rate of 0.5 lb. NOx/MMBtu

Preliminary SNCR Cost Calculations(in 2012 dollars)

				NOx Removal		Capital	
	Boiler Size	Heat Rate	NOx Control	Efficiency	Variable O&M	Cost	Fixed O&M Cost
Type of Boiler	(MW)	(Btu/kWh)	Technology	(%)	(\$/MWh)	(\$/kW)	(\$/kW-yr)
	100	10000	SNCR	25	1.19	56	0.50
Coal Boilers Tangential-fired	300	10000	SNCR	25	1.19	30	0.27
	500	10000	SNCR	25	1.19	23	0.20
	700	10000	SNCR	25	1.19	19	0.17
	1000	10000	SNCR	25	1.19	16	0.14

Based on Sargent & Lundy Cost Development Methodology for IPM Model v.5.13 (S&L, March 2013)

<u>http://www.epa.gov/airmarkets/progsregs/epa-ipm/docs/v513/attachment5_4.pdf</u> Assumes boiler burning bituminous coal with a NOx input rate of 0.5 lb. NOx/MMBtu

EMF is one-stop-shopping for air emission work

•Remote access 🗸

•Organized file storage 🗹

Emissions data analysis tools 🗹

.Graphical capabilities – Map emissions

Future Inventory development

Strategy cost analysis tools

Prepare modeling files

Remote Access

- •EMF Installed on the Cloud
- •Remote secure online access
 - MARAMA 2007/2017/2020
 - EPA 2011/2018 v1 Modeling Platform
- •State Staff can:
 - Use EMF filters to select and download small parts or larger files- smaller file size allows easier analysis on your own machine
 - Merge files online and download combined files

Perform analysis online

Organized File Storage

- •File types recognized by EMF and searchable
- User changes tracked and document
- Metadata containing documentation is associated with each file

Dataset P	roperties	s Editor: 201	1NEIv1_P	OINT_201307	23_revised	_ptnonipm	_15aug2
Summary	Data	Keywords	Notes	Revisions	History	Sources	QA
Name:	2011NE	Elv1_POINT_	20130723	3_revised_ptn	onipm_15a	ug2013_v3	.CSV
	#FORM	AT=FF10_P	DINT				
					\mathbf{M}	[ARA]	MA

Emission Data Analysis Tools

Examples: Summarize and Compare

	poll	ann_emis_2007	ann_emis_2011	ann_emis_diff	а
0	0	1,951.75	2,237.79	286.04	
1	1H3	2,075.56	2,392.45	316.88	
1	10X	366.41	419.55	53.14	
5	302	158.87	116.39	-42.48	
۱V	/0C	2,047.20	1,665.87	-381.33	
	0	3,906.82	4,374.92	468.10	
1	IH3	653.01	623.64	-29.37	
1	10X	1,292.85	1,424.68	131.82	
5	302	629.98	457.06	-172.92	
۱V	/0C	4,958.88	4,766.52	-192.35	
	0	2,407.14	2,239.25	-167.88	
1	JH3	9,653.19	10,154.67	501.48	
1	10X	577.49	648.88	71.40	
5	602	354.89	211.03	-143.86	
V	/0C	2,476.32	2,285.67	-190.65	

MARAMA

Emissions Data Analysis Tools

Examples: Graph Emissions using Google Maps

MARAMA

Future Inventory Development

- Apply growth factors to create future year inventories
- •Currently can grow to any year out to 2030
- Apply facility changes including new sources, plant closures, and new allowable emission rates
- Apply control measures
- Scenario development

Temporalize Inventories

- Emission files are prepared on different time steps:
 - Non-EGU Point and Area Sources- Annual
 - EGU-Hourly
 - Nonroad- Monthly
- Temporal tool will allow inventories to be normalized to a selected time step
- Allows for HEDD or ozone season analysis
- Tool still in development by UNC

CoST Analysis Tool

- •USEPA uses the Cost tool to prepare RIA's
- •CoST tool is fully functional in the MARAMA EMF

*MARAMA recommends that users evaluate the cost factors contained in the tool to confirm their validity prior to use of the tool by states

Cost Analysis: Per Ton Cost Curve

*Data generated by CoST, but plotted with Excel

Preparation of Modeling Files

- •The EMF creates future year, SMOKE ready inventories.
 - Advantages
 - Cost saving
 - Time saving
 - Ability to easily make last minute changes

EMF Training

- •Six webinars comprising 10 hours of training held from January through March 2014
- •EMF Users Guides updated and provided electronically
- •SQL was a barrier to user implementation
- •Three ongoing user groups established
- •More training needed- refresher series, including SQL will be offered this fall

EMF Conclusion

- •As we shift to a 2011 base year, we are using EMF rather than a contractor to project future emissions and capacity building
- •EMF allows remote access to regional data sets for analysis
- •Training and practice work groups are essential

Distributed and Emergency Generator Inventory

•OTC pursuing strategy of using state authority to gather information on DR engines

•OTC looking into how to account for Demand Response emissions in modeling scerios

Other SAS Committee Updates

Consumer Products Rule

- OTC Sent EPA a request to adopt the OTC Consumer Products Model Rule as a National Rule
 - Available at <u>http://www.otcair.org</u>

AIM

 Beginning process to develop a package to present to EPA asking for the adoption of the OTC AIM Model Rule as a National Rule.

Vapor Recovery

- Delaware has proposed regulation for the Stage II program
- Continue to look at ways to improve Stage I
- Looking at Low Permeation Hoses, Dripless Nozzles, and Pressure Monitoring and Management

Next Steps for the Committee

- Continue to evaluate EGU NOx real world emission data including daily EGU NOx emissions during ozone season episodes and HEDD days
- Use Largest Contributor analyses in ERTAC EGU modeling
- Look at ICI Boiler Emissions
- Recommend using individual state authorities to collect data from demand response units
- Continue developing the AIM model rule to send to EPA.
- Continue to evaluate Vapor Recovery strategy options.
- Continue to provide an economic impact assessment of each new or significantly revised strategy that is presented to the Commission for action or consideration

Questions?

